Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus.

Identifieur interne : 000140 ( Main/Exploration ); précédent : 000139; suivant : 000141

Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus.

Auteurs : Yangyan Zhou [République populaire de Chine] ; Yue Zhang [République populaire de Chine] ; Xuewen Wang [États-Unis] ; Xiao Han [République populaire de Chine] ; Yi An [République populaire de Chine] ; Shiwei Lin [République populaire de Chine] ; Chao Shen [République populaire de Chine] ; Jialong Wen [République populaire de Chine] ; Chao Liu [République populaire de Chine] ; Weilun Yin [République populaire de Chine] ; Xinli Xia [République populaire de Chine]

Source :

RBID : pubmed:32145071

Abstract

Root growth control plays an important role in plant adaptation to drought stress, but the underlying molecular mechanisms of this control remain largely elusive. Here, a root-specific nuclear factor Y (NF-Y) transcription factor PdNF-YB21 was isolated from Populus. The functional mechanism of PdNF-YB21 was characterised by various morphological, physiological, molecular, biochemical and spectroscopy techniques. Overexpression of PdNF-YB21 in poplar promoted root growth with highly lignified and enlarged xylem vessels, resulting in increased drought resistance. By contrast, CRISPR/Cas9-mediated poplar mutant nf-yb21 exhibited reduced root growth and drought resistance. PdNF-YB21 interacted with PdFUSCA3 (PdFUS3), a B3 domain transcription factor. PdFUS3 directly activated the promoter of the abscisic acid (ABA) synthesis key gene PdNCED3, resulting in a significant increase in root ABA content in poplars subjected to water deficit. Coexpression of poplar NF-YB21 and FUS3 significantly enhanced the expression of PdNCED3. Furthermore, ABA promoted indoylacetic acid transport in root tips, which ultimately increased root growth and drought resistance. Taken together, our data indicate that NF-YB21-FUS3-NCED3 functions as an important avenue in auxin-regulated poplar root growth in response to drought.

DOI: 10.1111/nph.16524
PubMed: 32145071


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus.</title>
<author>
<name sortKey="Zhou, Yangyan" sort="Zhou, Yangyan" uniqKey="Zhou Y" first="Yangyan" last="Zhou">Yangyan Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xuewen" sort="Wang, Xuewen" uniqKey="Wang X" first="Xuewen" last="Wang">Xuewen Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300</wicri:regionArea>
<wicri:noRegion>311300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="An, Yi" sort="An, Yi" uniqKey="An Y" first="Yi" last="An">Yi An</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300</wicri:regionArea>
<wicri:noRegion>311300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Shiwei" sort="Lin, Shiwei" uniqKey="Lin S" first="Shiwei" last="Lin">Shiwei Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shen, Chao" sort="Shen, Chao" uniqKey="Shen C" first="Chao" last="Shen">Chao Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wen, Jialong" sort="Wen, Jialong" uniqKey="Wen J" first="Jialong" last="Wen">Jialong Wen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chao" sort="Liu, Chao" uniqKey="Liu C" first="Chao" last="Liu">Chao Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32145071</idno>
<idno type="pmid">32145071</idno>
<idno type="doi">10.1111/nph.16524</idno>
<idno type="wicri:Area/Main/Corpus">000411</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000411</idno>
<idno type="wicri:Area/Main/Curation">000411</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000411</idno>
<idno type="wicri:Area/Main/Exploration">000411</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus.</title>
<author>
<name sortKey="Zhou, Yangyan" sort="Zhou, Yangyan" uniqKey="Zhou Y" first="Yangyan" last="Zhou">Yangyan Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xuewen" sort="Wang, Xuewen" uniqKey="Wang X" first="Xuewen" last="Wang">Xuewen Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300</wicri:regionArea>
<wicri:noRegion>311300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="An, Yi" sort="An, Yi" uniqKey="An Y" first="Yi" last="An">Yi An</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300</wicri:regionArea>
<wicri:noRegion>311300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Shiwei" sort="Lin, Shiwei" uniqKey="Lin S" first="Shiwei" last="Lin">Shiwei Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shen, Chao" sort="Shen, Chao" uniqKey="Shen C" first="Chao" last="Shen">Chao Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wen, Jialong" sort="Wen, Jialong" uniqKey="Wen J" first="Jialong" last="Wen">Jialong Wen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chao" sort="Liu, Chao" uniqKey="Liu C" first="Chao" last="Liu">Chao Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Root growth control plays an important role in plant adaptation to drought stress, but the underlying molecular mechanisms of this control remain largely elusive. Here, a root-specific nuclear factor Y (NF-Y) transcription factor PdNF-YB21 was isolated from Populus. The functional mechanism of PdNF-YB21 was characterised by various morphological, physiological, molecular, biochemical and spectroscopy techniques. Overexpression of PdNF-YB21 in poplar promoted root growth with highly lignified and enlarged xylem vessels, resulting in increased drought resistance. By contrast, CRISPR/Cas9-mediated poplar mutant nf-yb21 exhibited reduced root growth and drought resistance. PdNF-YB21 interacted with PdFUSCA3 (PdFUS3), a B3 domain transcription factor. PdFUS3 directly activated the promoter of the abscisic acid (ABA) synthesis key gene PdNCED3, resulting in a significant increase in root ABA content in poplars subjected to water deficit. Coexpression of poplar NF-YB21 and FUS3 significantly enhanced the expression of PdNCED3. Furthermore, ABA promoted indoylacetic acid transport in root tips, which ultimately increased root growth and drought resistance. Taken together, our data indicate that NF-YB21-FUS3-NCED3 functions as an important avenue in auxin-regulated poplar root growth in response to drought.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32145071</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>227</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>407-426</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16524</ELocationID>
<Abstract>
<AbstractText>Root growth control plays an important role in plant adaptation to drought stress, but the underlying molecular mechanisms of this control remain largely elusive. Here, a root-specific nuclear factor Y (NF-Y) transcription factor PdNF-YB21 was isolated from Populus. The functional mechanism of PdNF-YB21 was characterised by various morphological, physiological, molecular, biochemical and spectroscopy techniques. Overexpression of PdNF-YB21 in poplar promoted root growth with highly lignified and enlarged xylem vessels, resulting in increased drought resistance. By contrast, CRISPR/Cas9-mediated poplar mutant nf-yb21 exhibited reduced root growth and drought resistance. PdNF-YB21 interacted with PdFUSCA3 (PdFUS3), a B3 domain transcription factor. PdFUS3 directly activated the promoter of the abscisic acid (ABA) synthesis key gene PdNCED3, resulting in a significant increase in root ABA content in poplars subjected to water deficit. Coexpression of poplar NF-YB21 and FUS3 significantly enhanced the expression of PdNCED3. Furthermore, ABA promoted indoylacetic acid transport in root tips, which ultimately increased root growth and drought resistance. Taken together, our data indicate that NF-YB21-FUS3-NCED3 functions as an important avenue in auxin-regulated poplar root growth in response to drought.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yangyan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xuewen</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">0000-0002-8110-9977</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0003-0848-4356</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Shiwei</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Chao</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wen</LastName>
<ForeName>JiaLong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chao</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-3803-6482</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Weilun</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xinli</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">0000-0003-3731-4970</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>MN264647</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">PdFUS3</Keyword>
<Keyword MajorTopicYN="Y">PdNCED3</Keyword>
<Keyword MajorTopicYN="Y">PdNF-YB21</Keyword>
<Keyword MajorTopicYN="Y">drought resistance</Keyword>
<Keyword MajorTopicYN="Y">root growth</Keyword>
<Keyword MajorTopicYN="Y">root-specific expression</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32145071</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16524</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Abrámoff MD, Magalhães PJ, Ram SJ. 2004. Image processing with ImageJ. Biophotonics International 11: 36-42.</Citation>
</Reference>
<Reference>
<Citation>Arend M, Fromm J. 2007. Seasonal change in the drought response of wood cell development in poplar. Tree Physiology 27: 985-992.</Citation>
</Reference>
<Reference>
<Citation>Ballif J, Endo S, Kotani M, MacAdam J, Wu YJ. 2011. Over-expression of HAP3b enhances primary root elongation in Arabidopsis. Plant Physiology and Biochemistry 49: 579-583.</Citation>
</Reference>
<Reference>
<Citation>Bang SW, Lee DK, Jung H, Chung PJ, Kim YS, Choi YD, Suh JW, Kim JK. 2019. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Plant Biotechnology Journal 17: 118-131.</Citation>
</Reference>
<Reference>
<Citation>Bhardwaj R, Handa N, Sharma R, Kaur H, Kohli S, Kumar V, Kaur P. 2014. Lignins and abiotic stress: an overview. In: Ahmad P, Wani M, eds. Physiological mechanisms and adaptation strategies in plants under changing environment, vol. 1. New York, NY: Springer, 267-296.</Citation>
</Reference>
<Reference>
<Citation>Bi C, Ma Y, Wang XF, Zhang DP. 2017. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis. Plant Molecular Biology 95: 425-439.</Citation>
</Reference>
<Reference>
<Citation>Booker J, Chatfield S, Leyser O. 2003. Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15: 495-507.</Citation>
</Reference>
<Reference>
<Citation>Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.</Citation>
</Reference>
<Reference>
<Citation>Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C. 2015. How tree roots respond to drought. Frontiers in Plant Science 6: 547.</Citation>
</Reference>
<Reference>
<Citation>Casson SA, Lindsey K. 2006. The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiology 142: 526-541.</Citation>
</Reference>
<Reference>
<Citation>Chan A, Carianopol C, Tsai AY, Varatharajah K, Chiu RS, Gazzarrini S. 2017. SnRK1 phosphorylation of FUSCA3 positively regulates embryogenesis, seed yield, and plant growth at high temperature in Arabidopsis. Journal of Experimental Botany 68: 21-22.</Citation>
</Reference>
<Reference>
<Citation>Chen M, Zhao Y, Zhuo C, Lu S, Guo Z. 2015. Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnology Journal 13: 482-491.</Citation>
</Reference>
<Reference>
<Citation>Chen TY, Wang B, Wu YY, Wen JL, Liu CF, Yuan TQ, Sun RC. 2017. Structural variations of lignin macromolecule from different growth years of Triploid of Populus tomentosa Carr. International Journal of Biological Macromolecules 101: 747-757.</Citation>
</Reference>
<Reference>
<Citation>Cochard H, Froux F, Mayr S, Coutand C. 2004. Xylem wall collapse in water-stressed pine needles. Plant Physiology 134: 401-408.</Citation>
</Reference>
<Reference>
<Citation>Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G. 2004. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiology 136: 3660-3669.</Citation>
</Reference>
<Reference>
<Citation>Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V. 2017. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. The Plant Journal 89: 692-705.</Citation>
</Reference>
<Reference>
<Citation>Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA. 2012. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338: 1055-1060.</Citation>
</Reference>
<Reference>
<Citation>Ding Z, De Smet I. 2013. Localised ABA signalling mediates root growth plasticity. Trends in Plant Science 18: 533-535.</Citation>
</Reference>
<Reference>
<Citation>Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM. 2006. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiology 140: 603-612.</Citation>
</Reference>
<Reference>
<Citation>Faraday CD, Spanswick RM. 1992. Maize root plasma membranes isolated by aqueous polymer two-phase partitioning: assessment of residual tonoplast ATPase and pyrophosphatase activities. Journal of Experimental Botany 43: 1583-1590.</Citation>
</Reference>
<Reference>
<Citation>Fauser F, Schiml S, Puchta H. 2014. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal 79: 348-359.</Citation>
</Reference>
<Reference>
<Citation>Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N, Torii KU, Friml J. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants 4: 453-459.</Citation>
</Reference>
<Reference>
<Citation>Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P. 2004. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Developmental Cell 7: 373-385.</Citation>
</Reference>
<Reference>
<Citation>Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A. 2015. Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell 27: 2800-2813.</Citation>
</Reference>
<Reference>
<Citation>Gnesutta N, Kumimoto RW, Swain S, Chiara M, Siriwardana C, Horner DS, Holt BF III, Mantovani R. 2017. CONSTANS imparts DNA sequence specificity to the histone fold NF-YB/NF-YC dimer. Plant Cell 29: 1516-1532.</Citation>
</Reference>
<Reference>
<Citation>Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N et al. 2005. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Plant Journal 43: 553-567.</Citation>
</Reference>
<Reference>
<Citation>Hacke UG, Spicer R, Schreiber SG, Plavcova L. 2017. An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment 40: 831-845.</Citation>
</Reference>
<Reference>
<Citation>Hamanishi ET, Campbell MM. 2011. Genome-wide responses to drought in forest trees. Forestry 84: 273-283.</Citation>
</Reference>
<Reference>
<Citation>Han X, Tang S, An Y, Zheng DC, Xia XL, Yin WL. 2013. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis. Journal of Experimental Botany 64: 4589-4601.</Citation>
</Reference>
<Reference>
<Citation>Hao S, Zhao T, Xia X, Yin W. 2011. Genome-wide comparison of two poplar genotypes with different growth rates. Plant Molecular Biology 76: 575-591.</Citation>
</Reference>
<Reference>
<Citation>Hauser F, Li ZX, Waadt R, Schroeder JI. 2017. Snapshot: abscisic acid signaling. Cell 171: 1708-1708.</Citation>
</Reference>
<Reference>
<Citation>Hileman LC, Drea S, Martino G, Litt A, Irish VF. 2005. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). The Plant Journal 44: 334-341.</Citation>
</Reference>
<Reference>
<Citation>Hou BZ, Xu C, Shen YY. 2018. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. Journal of Experimental Botany 69: 1569-1582.</Citation>
</Reference>
<Reference>
<Citation>Hu Y, Li WC, Xu YQ, Li GJ, Liao Y, Fu FL. 2009. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. Journal of Applied Genetics 50: 213-223.</Citation>
</Reference>
<Reference>
<Citation>Hund A, Ruta N, Liedgens M. 2008. Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant and Soil 318: 311-325.</Citation>
</Reference>
<Reference>
<Citation>Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27: 325-333.</Citation>
</Reference>
<Reference>
<Citation>Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK. 2013. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal 11: 101-114.</Citation>
</Reference>
<Reference>
<Citation>Jia BR, Zhou GS, Wang FY, Wang YH, Yuan WP, Zhou L. 2006. Partitioning root and microbial contributions to soil respiration in Leymus chinensis populations. Soil Biology & Biochemistry 38: 653-660.</Citation>
</Reference>
<Reference>
<Citation>Jupa R, Plavcova L, Flamikova B, Gloser V. 2016. Effects of limited water availability on xylem transport in liana Humulus lupulus L. Environmental and Experimental Botany 130: 22-32.</Citation>
</Reference>
<Reference>
<Citation>Kadam NN, Yin X, Bindraban PS, Struik PC, Jagadish KS. 2015. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant? Plant Physiology 167: 1389-401.</Citation>
</Reference>
<Reference>
<Citation>Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874.</Citation>
</Reference>
<Reference>
<Citation>Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ. 2008. The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228: 709-723.</Citation>
</Reference>
<Reference>
<Citation>Lee DK, Jung H, Jang G, Jeong JS, Kim YS, Ha SH, Do Choi Y, Kim JK. 2016. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiology 172: 575-588.</Citation>
</Reference>
<Reference>
<Citation>Lewis DR, Muday GK. 2009. Measurement of auxin transport in Arabidopsis thaliana. Nature Protocols 4: 437-451.</Citation>
</Reference>
<Reference>
<Citation>Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20: 2238-2251.</Citation>
</Reference>
<Reference>
<Citation>Li X, Chen L, Forde BG, Davies WJ. 2017. The biphasic root growth response to abscisic acid in Arabidopsis involves interaction with ethylene and auxin signalling pathways. Frontiers in Plant Science 8: 1493.</Citation>
</Reference>
<Reference>
<Citation>Lin CC, Kao CH. 2001. Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings. Journal of Plant Physiology 158: 667-671.</Citation>
</Reference>
<Reference>
<Citation>Lin YC, Li W, Chen H, Li Q, Sun YH, Shi R, Lin CY, Wang JP, Chen HC, Chuang L et al. 2014. A simple improved-throughput xylem protoplast system for studying wood formation. Nature Protocols 9: 2194-2205.</Citation>
</Reference>
<Reference>
<Citation>Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H. 2019. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Frontiers in Plant Science 9: 1979.</Citation>
</Reference>
<Reference>
<Citation>Manschadi AM, Christopher J, deVoil P, Hammer GL. 2006. The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology 33: 823-837.</Citation>
</Reference>
<Reference>
<Citation>Mantovani R. 1999. The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15-27.</Citation>
</Reference>
<Reference>
<Citation>Mega R, Abe F, Kim JS, Tsuboi Y, Tanaka K, Kobayashi H, Sakata Y, Hanada K, Tsujimoto H, Kikuchi J et al. 2019. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nature Plants 5: 153-159.</Citation>
</Reference>
<Reference>
<Citation>Moshelion M, Halperin O, Wallach R, Oren R, Way DA. 2015. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant, Cell & Environment 38: 1785-1793.</Citation>
</Reference>
<Reference>
<Citation>Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology 52: 360-376.</Citation>
</Reference>
<Reference>
<Citation>Moura-Sobczak J, Souza U, Mazzafera P. 2011. Drought stress and changes in the lignin content and composition in Eucalyptus. BMC Proceedings 5: 1-1.</Citation>
</Reference>
<Reference>
<Citation>Myers ZA, Holt BF III. 2018. NUCLEAR FACTOR-Y: still complex after all these years? Current Opinion in Plant Biology 45: 96-102.</Citation>
</Reference>
<Reference>
<Citation>Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. 2003. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal 34: 137-48.</Citation>
</Reference>
<Reference>
<Citation>Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG et al. 2007. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences, USA 104: 16450-16455.</Citation>
</Reference>
<Reference>
<Citation>Pan X, Welti R, Wang X. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols 5: 986-992.</Citation>
</Reference>
<Reference>
<Citation>Petit G, Pfautsch S, Anfodillo T, Adams MA. 2010. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytologist 187: 1146-1153.</Citation>
</Reference>
<Reference>
<Citation>Polle A, Chen SL, Eckert C, Harfouche A. 2019. Engineering drought resistance in forest trees. Frontiers in Plant Science 9: 279.</Citation>
</Reference>
<Reference>
<Citation>Pound MP, French AP, Wells DM, Bennett MJ, Pridmore TP. 2012. CellSeT: novel software to extract and analyze structured networks of plant cells from confocal images. Plant Cell 24: 1353-1361.</Citation>
</Reference>
<Reference>
<Citation>Prince SJ, Murphy M, Mutava RN, Durnell LA, Valliyodan B, Shannon JG, Nguyen HT. 2017. Root xylem plasticity to improve water use and yield in water-stressed soybean. Journal of Experimental Botany 68: 2027-2036.</Citation>
</Reference>
<Reference>
<Citation>Ramachandran P, Wang G, Augstein F, de Vries J, Carlsbecker A. 2018. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development 145: dev159202.</Citation>
</Reference>
<Reference>
<Citation>Rodríguez-Gamir J, Intrigliolo DS, Primo-Millo E, Forner-Giner MA. 2010. Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiologia Plantarum 139: 159-169.</Citation>
</Reference>
<Reference>
<Citation>Romier C, Cocchiarella F, Mantovani R, Moras D. 2003. The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. Journal of Biological Chemistry 278: 1336-1345.</Citation>
</Reference>
<Reference>
<Citation>Rowe JH, Topping JF, Liu JL, Lindsey K. 2016. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytologist 211: 225-239.</Citation>
</Reference>
<Reference>
<Citation>Saab IN, Sharp RE, Pritchard J, Voetberg GS. 1990. Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiology 93: 1329-1336.</Citation>
</Reference>
<Reference>
<Citation>Sato H, Suzuki T, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki. . 2019. NF-YB2 and NF-YB3 have functionally diverged and differentially induce drought and HeatStress-specific genes. Plant Physiology 180: 1677-1690.</Citation>
</Reference>
<Reference>
<Citation>Sato H, Takasaki H, Takahashi F, Suzuki T, Iuchi S, Mitsuda N, Ohme-Takagi M, Ikeda M, Seo M, Yamaguchi-Shinozaki K et al. 2018. Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proceedings of the National Academy of Sciences, USA 47: 11178-11187.</Citation>
</Reference>
<Reference>
<Citation>Sharp RE. 2002. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growthresponses to water stress. Plant, Cell & Environment 25: 211-222.</Citation>
</Reference>
<Reference>
<Citation>Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT. 2004. Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany 407: 2343-2351.</Citation>
</Reference>
<Reference>
<Citation>Sharp RE, Wu Y, Voetberg GS, Saab IN, LeNoble ME. 1994. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. Journal of Experimental Botany 45: 1743-1751.</Citation>
</Reference>
<Reference>
<Citation>Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z. 2014. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiology and Biochemistry 82: 209-217.</Citation>
</Reference>
<Reference>
<Citation>Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z. 2013. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. Journal of Experimental Botany 64: 1367-1379.</Citation>
</Reference>
<Reference>
<Citation>Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced 1617: 1-16.</Citation>
</Reference>
<Reference>
<Citation>Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen HM, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR. 2016. A transcription factor hierarchy defines an environmental stress response network. Science 354: 6312.</Citation>
</Reference>
<Reference>
<Citation>Sorin C, Declerck M, Christ A, Blein T, Ma L, Lelandais-Brière C, Njo MF, Beeckman T, Crespi M, Hartmann C. 2014. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. New Phytologist 202: 1197-1211.</Citation>
</Reference>
<Reference>
<Citation>Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE. 2000. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiology 122: 967-976.</Citation>
</Reference>
<Reference>
<Citation>Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z et al. 2009. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology 149: 1141-1153.</Citation>
</Reference>
<Reference>
<Citation>Suzuki M, McCarty DR. 2008. Functional symmetry of the B3 network controlling seed development. Current Opinion in Plant Biology 11: 548-553.</Citation>
</Reference>
<Reference>
<Citation>Tang N, Shahzad Z, Lonjon F, Loudet O, Vailleau F, Maurel C. 2018. Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis. Nature Communications 9: 3384.</Citation>
</Reference>
<Reference>
<Citation>Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2313: 1596-1604.</Citation>
</Reference>
<Reference>
<Citation>Vasellati V, Oesterheld M, Medan D, Loreti J. 2001. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Annals of Botany 88: 355-360.</Citation>
</Reference>
<Reference>
<Citation>Wang AY, Wang M, Yang D, Song J, Zhang WW, Han SJ, Hao GY. 2016. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica. Tree Physiology 36: 1045-1055.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH. 2011. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. Journal of Experimental Botany 62: 2899-2914.</Citation>
</Reference>
<Reference>
<Citation>Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD. 2015. Root structural and functional dynamics in terrestrial biosphere models-evaluation and recommendations. New Phytologist 205: 59-78.</Citation>
</Reference>
<Reference>
<Citation>Wildhagen H, Paul S, Allwright M, Smith HK, Malinowska M, Schnabel SK, Paulo MJ, Cattonaro F, Vendramin V, Scalabrin S et al. 2017. Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigra. Tree Physiology 38: 320-339.</Citation>
</Reference>
<Reference>
<Citation>Xu C, Fu X, Liu R, Guo L, Ran L, Li C, Tian Q, Jiao B, Wang B, Luo K. 2017. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiology 37: 1713-1726.</Citation>
</Reference>
<Reference>
<Citation>Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. 2013. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytologist 197: 139-150.</Citation>
</Reference>
<Reference>
<Citation>Yang MY, Zhao YJ, Shi SY, Du XM, Gu JT, Xiao K. 2017. Wheat nuclear factor Y (NF-Y) B subfamily gene TaNF-YB3;l confers critical drought tolerance through modulation of the ABA-associated signaling pathway. Plant Cell Tissue and Organ Culture 128: 97-111.</Citation>
</Reference>
<Reference>
<Citation>Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572.</Citation>
</Reference>
<Reference>
<Citation>Yoshida T, Mogami J, Yamaguchi-Shinozaki K. 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology 21: 133-139.</Citation>
</Reference>
<Reference>
<Citation>Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K. 2008. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits. Plant and Cell Physiology 49: 226-241.</Citation>
</Reference>
<Reference>
<Citation>Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y et al. 2016. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnology Journal 14: 72-84.</Citation>
</Reference>
<Reference>
<Citation>Zhang HM, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong HL, Jürgens G, Knox JP, Wang HM. 2010. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. The Plant Journal 64: 764-774.</Citation>
</Reference>
<Reference>
<Citation>Zhang X, Ji Y, Xue C, Ma H, Xi Y, Huang P, Wang H, An F, Li B, Wang Y et al. 2018. Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis. Plant Cell 30: 1971-1988.</Citation>
</Reference>
<Reference>
<Citation>Zhao YY, Lin S, Qiu Z, Cao DC, Wen JL, Deng X, Wang XH, Lin JX, Li XJ. 2015. MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiology 169: 2539-2552.</Citation>
</Reference>
<Reference>
<Citation>Zhao YY, Man Y, Wen JL, Guo YY, Lin JX. 2019. Advances in imaging plant cell walls. Trends in Plant Science 24: 867-878.</Citation>
</Reference>
<Reference>
<Citation>Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167: 313-324.</Citation>
</Reference>
<Reference>
<Citation>Zhu J, Brown KM, Lynch JP. 2010. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, Cell & Environment 33: 740-749.</Citation>
</Reference>
<Reference>
<Citation>Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F, Shen Q. 2009. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant, Cell & Environment 32: 1428-1440.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhou, Yangyan" sort="Zhou, Yangyan" uniqKey="Zhou Y" first="Yangyan" last="Zhou">Yangyan Zhou</name>
</noRegion>
<name sortKey="An, Yi" sort="An, Yi" uniqKey="An Y" first="Yi" last="An">Yi An</name>
<name sortKey="An, Yi" sort="An, Yi" uniqKey="An Y" first="Yi" last="An">Yi An</name>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<name sortKey="Lin, Shiwei" sort="Lin, Shiwei" uniqKey="Lin S" first="Shiwei" last="Lin">Shiwei Lin</name>
<name sortKey="Liu, Chao" sort="Liu, Chao" uniqKey="Liu C" first="Chao" last="Liu">Chao Liu</name>
<name sortKey="Shen, Chao" sort="Shen, Chao" uniqKey="Shen C" first="Chao" last="Shen">Chao Shen</name>
<name sortKey="Wen, Jialong" sort="Wen, Jialong" uniqKey="Wen J" first="Jialong" last="Wen">Jialong Wen</name>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Wang, Xuewen" sort="Wang, Xuewen" uniqKey="Wang X" first="Xuewen" last="Wang">Xuewen Wang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000140 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000140 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32145071
   |texte=   Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32145071" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020